The Mahowald operator in the cohomology of the Steenrod algebra

Daniel C. Isaksen *
Department of Mathematics, Wayne State University, Detroit, MI 48202, USA
E-mail: isaksen@wayne.edu

Abstract

We study the Mahowald operator $M=\left\langle g_{2}, h_{0}^{3},-\right\rangle$ in the cohomology of the Steenrod algebra. We show that the operator interacts well with the cohomology of $A(2)$, in both the classical and \mathbb{C}-motivic contexts. This generalizes previous work of Margolis, Priddy, and Tangora.

2000 Mathematics Subject Classification. 55T15 . 16T05, 55S30, 55Q45, 14F42.
Keywords. cohomology of the Steenrod algebra, Adams spectral sequence, Mahowald operator.

1 Introduction

The cohomology of the Steenrod algebra is an algebraic object that serves as the input to the Adams spectral sequence. Therefore, its computation is of fundamental importance to the study of the stable homotopy groups of spheres. The goal of this note is to study part of the cohomology of the Steenrod algebra that displays some regular structure. We work in the \mathbb{C}-motivic context. Our results have immediate classical consequences, most of which are already known [12] or can be readily deduced from the results of [12]. The ultimate goal of this study is to serve as an aid in a detailed analysis of the Adams spectral sequence [10].

Let A be the \mathbb{C}-motivic Steenrod algebra at the prime $2[17][8]$. Let $\mathbb{M}_{2}=\mathbb{F}_{2}[\tau]$ be the \mathbb{C} motivic cohomology of a point with \mathbb{F}_{2}-coefficients [18]. We are interested in the algebraic object $\operatorname{Ext}_{\mathbb{C}}=\operatorname{Ext}_{A}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)$ because it serves as the E_{2}-page for the \mathbb{C}-motivic Adams spectral sequence. These Ext groups are of increasingly wild complexity as the dimension increases. The May spectral sequence [13] can be used to compute them in a range. Machines can compute in an even larger range [2] [3] [4] [16]. In either case, these methods cannot determine the entire structure because it is of infinite complexity.

Nevertheless, parts of the computation display regularity. For example, Adams described a regular v_{1}-periodic pattern near the "top of the Adams chart", i.e., when the Adams filtration is large relative to the stem [1]. May extended this v_{1}-periodicity to a larger range [15]. (See also [11] for results about \mathbb{C}-motivic v_{1}-periodicity.)

The goal of this article is similar. We study the Mahowald operator $\left\langle g_{2}, h_{0}^{3},-\right\rangle$, which is defined on all elements x such that $h_{0}^{3} x=0$. We will show that the Mahowald operator behaves regularly in a certain way.

This article is very much inspired by the work of Margolis, Priddy, and Tangora [12]. We are extending those results in two senses. First, we are working in the \mathbb{C}-motivic, rather than classical, context. Classical results can easily be deduced from our \mathbb{C}-motivic results by inverting τ. Second, we work with a larger subalgebra of the Steenrod algebra, and therefore can detect more classes.

[^0]Table 1. Some values of the map $p_{*}: \operatorname{Ext}_{\mathbb{C}} \rightarrow \operatorname{Ext}_{B}$

(s, f, w)	x	$p_{*}(x)$
$(53,10,28)$	$M P$	$P e_{0} v_{3}^{2}+P h_{1}^{3} v_{3}^{3}$
$(56,10,29)$	$\Delta^{2} h_{1} h_{3}$	$\tau P g v_{3}^{2}$
$(60,9,32)$	B_{4}	$a g v_{3}^{2}$
$(66,10,35)$	τB_{5}	$\tau h_{2} n g v_{3}^{2}$
$(90,12,48)$	M^{2}	$d_{0} g v_{3}^{4}+h_{1}^{6} v_{3}^{6}$

When discussing Ext groups, we grade elements in the form (s, f, w), where s is the stem, f is the Adams filtration, and w is the motivic weight. See [8] [9] for more details about notation and for specific computations.

Recall that $A(2)$ is the \mathbb{M}_{2}-subalgebra of A generated by $\mathrm{Sq}^{1}, \mathrm{Sq}^{2}$, and Sq^{4}. We have a complete understanding of its cohomology, i.e., of $\operatorname{Ext}_{A(2)}=\operatorname{Ext}_{A(2)}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)[7]$.

Theorem 1.1. There exists a sub-Hopf algebra B of the \mathbb{C}-motivic Steenrod algebra (defined below in Definition 2.1) such that:

1. $\operatorname{Ext}_{B}=\operatorname{Ext}_{B}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)$ is isomorphic to $\mathbb{M}_{2}\left[v_{3}\right] \mathbb{M}_{\mathbb{M}_{2}} \operatorname{Ext}_{A(2)}$, where v_{3} has degree (14, 1, 7).
2. the map $p_{*}: \operatorname{Ext}_{\mathbb{C}} \rightarrow \operatorname{Ext}_{B}$ takes $M x$ to the product $\left(e_{0} v_{3}^{2}+h_{1}^{3} v_{3}^{3}\right) p_{*}(x)$, whenever $M x$ is defined. Also, p_{*} takes the indeterminacy in $M x$ to zero.

The theorem can also be stated in the classical context, in an essentially identical form.
Theorem 1.1 allows us to extract much information about the global structure of Ext ${ }_{C}$. The following corollary gives partial information about the structure of $\operatorname{Ext}_{\mathbb{C}}$ in very high dimensions.

Corollary 1.2. Let x be an element of $\operatorname{Ext}_{\mathbb{C}}$ such that $h_{1}^{3} x=0$, and let $k \geq 0$ such that the image of $e_{0}^{k} x$ in $\operatorname{Ext}_{A(2)}$ is non-zero. Then $M^{k} x$ is non-zero in Ext ${ }_{\mathbb{C}}$.

Proof. By Theorem 1.1, $p_{*}\left(M^{k} x\right)$ is non-zero in Ext_{B}. Therefore, $M^{k} x$ must be non-zero. Q.E.d.
For example, x could be $h_{0}, h_{0}^{2}, \tau h_{1}, h_{2}$, or $h_{0} h_{2}$ with any value of k. There are many other possibilities as well. Some, but not all, cases of Corollary 1.2 are already covered by [12].

Here is an even more explicit illustration of the kind of information that can be deduced from Corollary 1.2. Consider the element $h_{0} d_{0}$. We have that $h_{0} d_{0} e_{0}^{k}$ is non-zero in $\operatorname{Ext}_{A(2)}$ for all $k \geq 0$. (However, $\tau^{2} h_{0} d_{0} e_{0}^{k}=0$ in $\operatorname{Ext}_{A(2)}$ when $k \geq 2$). We can conclude that $M^{k} h_{0} d_{0}$ is non-zero in Ext $_{\mathbb{C}}$ for all $k \geq 0$, even though it may be annihilated by powers of τ.

Theorem 1.1 detects additional phenomena in Ext_{A} that are not captured by Corollary 1.2. Namely, the theorem can be used to study classes in Ext_{A} whose image under p_{*} is non-zero. Some examples are listed in Table 1. This list is far from exhaustive.

Sometimes, analysis of a particular Adams differential requires knowledge of the algebraic structure of $\operatorname{Ext}_{\mathbb{C}}$ in much higher dimensions. If the higher dimension is not too large, then one can rely on explicit machine computations. But if the higher dimension goes beyond the current range of
machine computations, then results such as Corollary 1.2 can be of great use. See [10] for specific examples of precisely this situation.

The subalgebra $A(2)$ of the \mathbb{C}-motivic Steenrod algebra is of particular importance because there exists a \mathbb{C}-motivic modular forms spectrum $m m f$ [5] whose cohomology is isomorphic to $A / / A(2)$. This implies that $\operatorname{Ext}_{A(2)}$ is the E_{2}-page of the Adams spectral sequence that converges to the homotopy groups of $m m f$.

One might hope that the sub-Hopf algebra B is similarly realizable. We will show in Theorem 6.1 that it is not. In other words, while Ext_{B} is useful for studying the algebraic structure of the \mathbb{C}-motivic Adams E_{2}-page $E^{2} t_{\mathbb{C}}$, it cannot be used to study Adams differentials.

2 A subalgebra of the \mathbb{C}-motivic Steenrod algebra

Recall that the dual \mathbb{C}-motivic Steenrod algebra $A_{*}[18][8]$ takes the form

$$
\frac{\mathbb{M}_{2}\left[\tau_{0}, \tau_{1}, \ldots, \xi_{1}, \xi_{2}, \ldots\right]}{\tau_{i}^{2}=\tau \xi_{i+1}}
$$

where $\mathbb{M}_{2}=\mathbb{F}_{2}[\tau]$. The coproduct of A_{*} is given by the formulas

$$
\tau_{i} \mapsto \tau_{i} \otimes 1+\sum_{k=0}^{i} \xi_{i-k}^{2^{k}} \otimes \tau_{k} \quad \quad \xi_{i} \mapsto \sum_{k=0}^{i} \xi_{i-k}^{2^{k}} \otimes \xi_{k}
$$

By convention, we let ξ_{0} equal 1 .
Definition 2.1. Let B_{*} be the quotient

$$
\frac{\mathbb{M}_{2}\left[\tau_{0}, \tau_{1}, \tau_{2}, \tau_{3}, \xi_{1}, \xi_{2}\right]}{\tau_{0}^{2}+\tau \xi_{1}, \xi_{1}^{4}, \tau_{1}^{2}+\tau \xi_{2}, \xi_{2}^{2}, \tau_{2}^{2}, \tau_{3}^{2}}
$$

of A_{*}. Let B be the dual subobject of A.
Remark 2.2. The classical dual Steenrod algebra $A_{*}^{\text {cl }}$ takes the form $\mathbb{F}_{2}\left[\zeta_{1}, \zeta_{2}, \ldots\right]$, which is the result of inverting τ in A_{*}, where τ_{i} and ξ_{i+1} correspond to ζ_{i+1} and ζ_{i+1}^{2} respectively. The classical analogue of B_{*} is the quotient

$$
\frac{\mathbb{F}_{2}\left[\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right]}{\zeta_{1}^{8}, \zeta_{2}^{4}, \zeta_{3}^{2}, \zeta_{4}^{2}}
$$

Lemma 2.3. The quotient B_{*} is a Hopf algebra that splits as

$$
\frac{\mathbb{M}_{2}\left[\tau_{0}, \tau_{1}, \tau_{2}, \xi_{1}, \xi_{2}\right]}{\tau_{0}^{2}+\tau \xi_{1}, \xi_{1}^{4}, \tau_{1}^{2}+\tau \xi_{2}, \xi_{2}^{2}, \tau_{2}^{2}} \otimes \frac{\mathbb{M}_{2}\left[\tau_{3}\right]}{\tau_{3}^{2}}
$$

Proof. To check that B_{*} is a Hopf algebra, one must verify that the coproduct is well-defined. In other words, if x is an element of A_{*} that maps to zero in B_{*}, then the coproduct of x in A_{*} also maps to zero in $B_{*} \otimes B_{*}$. This follows from direct computation.

The splitting also follows from direct computation. Namely, the coproduct of τ_{3} in A_{*} maps to $1 \otimes \tau_{3}+\tau_{3} \otimes 1$ in $B_{*} \otimes B_{*}$.

Proposition 2.4. $\operatorname{Ext}_{B}=\operatorname{Ext}_{B}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)$ is isomorphic to $\mathbb{M}_{2}\left[v_{3}\right]{ }_{\mathbb{M}_{2}} \operatorname{Ext}_{A(2)}$, where v_{3} has degree $(14,1,7)$.

Proof. This follows immediately from the splitting of Lemma 2.3, together with the observation that the cohomology of an exterior algebra is a polynomial algebra.
Q.E.D.

The projection map $p: A_{*} \rightarrow B_{*}$ induces a map $p_{*}: \operatorname{Ext}_{\mathbb{C}} \rightarrow \operatorname{Ext}_{B}$. We will use the map p_{*} to detect some structural phenomena in Ext $_{\mathbb{C}}$.

3 Massey products in Ext_{B}

The map p_{*} is induced by a map $\tilde{p}: C^{*}(A) \rightarrow C^{*}(B)$ of cobar complexes. Note that \tilde{p} is a map of differential graded algebras. In particular, $C^{*}(B)$ is a right $C^{*}(A)$-module, and therefore Ext_{B} is a right Ext $_{\mathbb{C}}$-module. By definition, $p_{*}(x)$ equals $1 \cdot x$, where 1 is the identity element of Ext_{B}.

Moreover, the map \tilde{p} makes Ext_{B} into a "Toda module" over Ext ${ }_{C}$, in the following sense. For all x in Ext_{B} and all a and b in $\operatorname{Ext}_{\mathbb{C}}$ such that $x \cdot a$ and $a b$ are both zero, there is a bracket $\langle x, a, b\rangle$ in Ext_{B}. These brackets satisfy the usual properties. Later in the proof of Proposition 4.2, we will use the shuffling relation

$$
\langle x, a, b\rangle \cdot c=x \cdot\langle a, b, c\rangle,
$$

for x in Ext_{B} and a, b, and c in $\operatorname{Ext}_{\mathbb{C}}$.
For later use, we compute one particular bracket. In Ext $\mathbb{C}_{\mathbb{C}}$, there is an element g_{2} of degree $(44,4,24)$ that is detected by b_{22}^{2} in the May spectral sequence. This element satisfies the relation $h_{0}^{3} g_{2}=0$.
Proposition 3.1. The bracket $\left\langle 1, g_{2}, h_{0}^{3}\right\rangle$ in Ext_{B} in degree $(45,6,24)$ equals $e_{0} v_{3}^{2}+h_{1}^{3} v_{3}^{3}$, with no indeterminacy.

Proof. First, we should verify that the bracket is well-defined. We need that $1 \cdot g_{2}$ equals zero in Ext_{B} in degree $(44,4,24)$. But Ext_{B} is zero in that degree, so $1 \cdot g_{2}$ must be zero.

Next, we compute the indeterminacy. By inspection, the only possible indeterminacy is generated by $1 \cdot h_{0} h_{5} d_{0}$. But this expression is zero because $1 \cdot h_{5}$ is zero in Ext ${ }_{B}$ for degree reasons.

The map \tilde{p} induces a map of May spectral sequences [13] [8]. The May E_{1}-page that converges to $\operatorname{Ext}_{\mathbb{C}}$ has generators of the form $h_{i j}$ with $i \geq 1$ and $j \geq 0$. On the other hand, the May E_{1}-page that converges to Ext ${ }_{B}$ has generators $h_{0}, h_{1}, h_{2}, h_{20}, h_{21}, h_{30}$, and h_{40}. The map of May spectral sequences takes $h_{i j}$ to the element of the same name, or to zero if the element is not present in the May E_{1}-page for Ext_{B}.

We will compute the bracket $\left\langle 1, g_{2}, h_{0}^{3}\right\rangle$ in Ext_{B} using the May Convergence Theorem [14] [8]. Beware that this theorem has a technical hypothesis involving the behavior of higher "crossing" differentials. In our specific case, this technical hypothesis is satisfied for degree reasons.

The key point is that there is a May differential

$$
d_{6}\left(\left(b_{21} b_{40}+b_{30} b_{31}\right) h_{0}(1)\right)=h_{0}^{3} g_{2}
$$

Therefore, $\left\langle 1, g_{2}, h_{0}^{3}\right\rangle$ is detected by the image of $\left(b_{21} b_{40}+b_{30} b_{31}\right) h_{0}(1)$ in the May spectral sequence for Ext_{B}. By inspection, this image equals $h_{40}^{2} b_{21} h_{0}(1)$.

Finally, we must determine the elements of Ext ${ }_{B}$ that are detected by $h_{40}^{2} b_{21} h_{0}(1)$ in the May spectral sequence. Note that e_{0} is detected by $b_{21} h_{0}(1)$ and v_{3} is detected by h_{40}. However, beware
that the element $h_{1}^{3} v_{3}^{3}$ is detected by $h_{1}^{3} h_{40}^{3}$ in lower May filtration. Consequently, $h_{40}^{2} b_{21} h_{0}(1)$ detects both $e_{0} v_{3}^{2}$ and $e_{0} v_{3}^{2}+h_{1}^{3} v_{3}^{3}$.

We have now shown that $\left\langle 1, g_{2}, h_{0}^{3}\right\rangle$ equals either $e_{0} v_{3}^{2}$ or $e_{0} v_{3}^{2}+h_{1}^{3} v_{3}^{3}$. Finally, we must distinguish between these two cases.

Recall from [6, p. 4729] that there is a relation $M h_{1}^{6}=e_{0}^{3}+d_{0} \cdot e_{0} g$ in Ext ${ }_{\mathbb{C}}$. Apply p_{*} to obtain a relation in Ext_{B}. We have that

$$
p_{*}\left(M h_{1}^{6}\right)=1 \cdot\left\langle g_{2}, h_{0}^{3}, h_{1}^{6}\right\rangle=\left\langle 1, g_{2}, h_{0}^{3}\right\rangle h_{1}^{6}
$$

Here, we are using the well-known Massey product

$$
M h_{1}^{6}=\left\langle g_{2}, h_{0}^{3}, h_{1}\right\rangle h_{1}^{5}
$$

(see, for example, [8, Table 16]). So the possible values for $p_{*}\left(M h_{1}^{6}\right)$ are $h_{1}^{6} e_{0} v_{3}^{2}$ and $h_{1}^{6} e_{0} v_{3}^{2}+h_{1}^{9} v_{3}^{3}$.
The possible values for $p_{*}\left(e_{0}\right)$ are $0, e_{0}, h_{1}^{3} v_{3}$, and $e_{0}+h_{1}^{3} v_{3}$, so the possible values of $p_{*}\left(e_{0}^{3}\right)$ are $0, e_{0}^{3}, h_{1}^{9} v_{3}^{3}$, and $e_{0}^{3}+h_{1}^{3} e_{0}^{2} v_{3}+h_{1}^{6} e_{0} v_{3}^{2}+h_{1}^{9} v_{3}^{3}$.

The only possible value for $p_{*}\left(d_{0}\right)$ is d_{0}. The possible values for $p_{*}\left(e_{0} g\right)$ are $0, e_{0} g, h_{1}^{3} g v_{3}$, and $e_{0} g+h_{1}^{3} g v_{3}$. (Recall that $e_{0} g$ is an indecomposable element in Ext ${ }_{\mathbb{C}}$.) Therefore, the possible values for $p_{*}\left(d_{0} \cdot e_{0} g\right)$ are $0, e_{0}^{3}, h_{1}^{3} e_{0}^{2} v_{3}$, and $e_{0}^{3}+h_{1}^{3} e_{0}^{2} v_{3}$. Here, we are using the relation $e_{0}^{2}=d_{0} g$ in $\operatorname{Ext}_{A(2)}$.

By inspection, the only consistent possibilities are that $p_{*}\left(e_{0}\right)=e_{0}+h_{1}^{3} v_{3}, p_{*}\left(e_{0} g\right)=e_{0} g+h_{1}^{3} g v_{3}$, and $p_{*}\left(M h_{1}^{6}\right)=h_{1}^{6} e_{0} v_{3}^{2}+h_{1}^{9} v_{3}^{3}$.
Q.E.D.

Remark 3.2. The May spectral sequence argument in the proof of Proposition 3.1 is much the same as the corresponding proof in [12]. However, the complications involving $h_{1}^{3} v_{3}^{3}$ are new.

Remark 3.3. The careful reader may wonder about the definitional distinction between e_{0} and $e_{0}+h_{1}^{3} v_{3}$. Cannot e_{0} in Ext_{B} be defined to be the value of $p_{*}\left(e_{0}\right)$? The answer lies in the multiplicative structure of $\operatorname{Ext}_{A(2)}$. There is a relation $h_{1}^{2} e_{0}=c_{0} u$ in $\operatorname{Ext}_{A(2)}$. From the formula $p_{*}\left(e_{0}\right)=e_{0}+h_{1}^{3} v_{3}$, it follows that $p_{*}\left(h_{1}^{2} e_{0}\right)$ is not divisible by c_{0} or u in Ext_{B}. This multiplicative fact is not consistent with the possibility that $p_{*}\left(e_{0}\right)=e_{0}$ under a different choice of basis.

4 The Mahowald operator

Definition 4.1. Let x be an element of Ext $\mathbb{C}_{\mathbb{C}}$ such that $h_{0}^{3} x=0$. Define $M x$ to be the Massey product $\left\langle g_{2}, h_{0}^{3}, x\right\rangle$.

As always, the Massey product $M x$ can have indeterminacy. In other words, $M x$ may be a set of elements, not just a single well-defined element.

If $h_{0}^{3} x=0$, then the iterated Massey products $M^{k} x=M\left(M^{k-1} x\right)$ are defined for all $k \geq 1$. This follows from the computation that

$$
h_{0}^{3}\left\langle g_{2}, h_{0}^{3}, x\right\rangle=\left\langle h_{0}^{3}, g_{2}, h_{0}^{3}\right\rangle x=0
$$

because $\left\langle h_{0}^{3}, g_{2}, h_{0}^{3}\right\rangle=0$.
Proposition 4.2. Let x be an element of Ext $\mathbb{C}_{\mathbb{C}}$ such that $h_{0}^{3} x=0$. Then $p_{*}(M x)$ equals $\left(e_{0} v_{3}^{2}+\right.$ $\left.h_{1}^{3} v_{3}^{3}\right) p_{*}(x)$ in Ext_{B}.

In particular, Proposition 4.2 implies that $p_{*}(M x)$ always consists of a single element, even if $M x$ has indeterminacy.

Proof. Consider the shuffling relation

$$
p_{*}(M x)=1 \cdot\left\langle g_{2}, h_{0}^{3}, x\right\rangle=\left\langle 1, g_{2}, h_{0}^{3}\right\rangle \cdot x
$$

Proposition 3.1 computes the second bracket.
Q.E.D.

Remark 4.3. We have stated our results in terms of Massey products of the form $\left\langle g_{2}, h_{0}^{3}, x\right\rangle$. However, they also apply to Massey products of the form $\left\langle h_{0} g_{2}, h_{0}^{2}, x\right\rangle$ and $\left\langle h_{0}^{2} g_{2}, h_{0}, x\right\rangle$, using the shuffling relations

$$
\left\langle h_{0}^{2} g_{2}, h_{0}, x\right\rangle \subseteq\left\langle h_{0} g_{2}, h_{0}^{2}, x\right\rangle \subseteq\left\langle g_{2}, h_{0}^{3}, x\right\rangle
$$

$5 \quad h_{1}$-periodic Ext

In the spirit of [6], one ought to study the h_{1}-periodic maps

$$
\operatorname{Ext}_{\mathbb{C}}\left[h_{1}^{-1}\right] \xrightarrow{p_{*}} \operatorname{Ext}_{B}\left[h_{1}^{-1}\right] \longrightarrow \operatorname{Ext}_{A(2)}\left[h_{1}^{-1}\right]
$$

Computationally, this diagram is

$$
\mathbb{F}_{2}\left[h_{1}^{ \pm 1}\right]\left[v_{1}^{4}, v_{2}, v_{3}, \ldots\right] \xrightarrow{p_{*}} \mathbb{F}_{2}\left[h_{1}^{ \pm 1}\right]\left[v_{1}^{4}, v_{2}, v_{3}, u\right] \longrightarrow \mathbb{F}_{2}\left[h_{1}^{ \pm 1}\right]\left[v_{1}^{4}, v_{2}, u\right] .
$$

Both maps take v_{1}^{4} to v_{1}^{4}. Moreover, the composition takes v_{n} to $v_{2} u^{2^{n-2}-1}[6$, Conjecture 5.5 and Proposition 6.4] [5]. In this formula and throughout this section, we suppress all multiples of h_{1} since it is a unit.

For degree reasons, p_{*} takes v_{2} to v_{2}. The computations of $p_{*}\left(e_{0}\right)$ and $p_{*}\left(e_{0} g\right)$ at the end of the proof of Proposition 3.1 imply that $p_{*}\left(v_{3}\right)=v_{3}+v_{2} u$ and that $p_{*}\left(v_{4}\right)=v_{3} u^{2}+v_{2} u^{3}$. We suspect that $p_{*}\left(v_{n}\right)=v_{3} u^{2^{n-2}-2}+v_{2} u^{2^{n-2}-1}$ in general, although we have not actually computed this formula.

On the other hand, the map

$$
\operatorname{Ext}_{B}\left[h_{1}^{-1}\right] \rightarrow \operatorname{Ext}_{A(2)}\left[h_{1}^{-1}\right]
$$

takes v_{2} and u to the elements of the same name in the target, and it must take v_{3} to 0 .
This information can be used to study h_{1}-periodic values of the Mahowald operator. In the notation of this section, the element $e_{0} v_{3}^{2}+h_{1}^{3} v_{3}^{3}$ of Ext_{B} maps to $\left(v_{3}+v_{2} u\right) v_{3}^{2}$ in $^{\operatorname{Ext}}{ }_{B}\left[h_{1}^{-1}\right]$. Therefore, for x in $\operatorname{Ext}_{\mathbb{C}}\left[h_{1}^{-1}\right]$, we have that $M x$ maps to $\left(v_{3}+v_{2} u\right) v_{3}^{2} p_{*}(x)$ in $\operatorname{Ext}_{B}\left[h_{1}^{-1}\right]$.

6 Non-Realizability

The purpose of Theorem 6.1 is that Ext_{B} is not the E_{2}-page of an Adams E_{2}-page. In other words, while Ext_{B} is useful for studying the algebraic structure of the \mathbb{C}-motivic Adams E_{2}-page Ext $_{\mathbb{C}}$, it cannot be used to study Adams differentials.

Theorem 6.1. There does not exist a \mathbb{C}-motivic ring spectrum E equipped with ring map $f: E \rightarrow$ $m m f$ such that the \mathbb{F}_{2}-motivic cohomology of E is $A / / B$, and such that f induces the projection

$$
A / / A(2) \rightarrow A / / B
$$

in cohomology.
Proof. Suppose that E exists. The unit map $S^{0,0} \rightarrow E$ induces a map of Adams spectral sequences. On E_{2}-pages, this map is $p_{*}: \operatorname{Ext}_{\mathbb{C}} \rightarrow \operatorname{Ext}_{B}$. By Theorem 1.1, the element $M h_{1}$ of $\operatorname{Ext}_{\mathbb{C}}$ maps to $h_{1} e_{0} v_{3}^{3}+h_{1}^{4} v_{3}^{3}$ in Ext_{B}. Since $M h_{1}$ is a permanent cycle in the Adams spectral sequence for the \mathbb{C}-motivic sphere spectrum [8], it follows by naturality that $h_{1} e_{0} v_{3}^{3}+h_{1}^{4} v_{3}^{3}$ is a permanent cycle in the Adams spectral sequence for E.

On the other hand, the map f also induces a map of Adams spectral sequences. On E_{2}-pages, this map takes the form $\operatorname{Ext}_{B} \rightarrow \operatorname{Ext}_{A(2)}$. The element v_{3} must be a permanent cycle for degree reasons. Also, $d_{2}\left(e_{0}\right)=h_{1}^{2} d_{0}$ in the Adams spectral sequence for $m m f$. By naturality of f, it follows that $d_{2}\left(h_{1} e_{0} v_{3}^{3}+h_{1}^{4} v_{3}^{3}\right)=h_{1}^{3} d_{0} v_{3}^{3}$.

This contradiction shows that E cannot exist.
Q.E.D.

Remark 6.2. One can also pose an analogous question about a classical spectrum whose cohomology is $A^{\mathrm{cl}} / / B^{\mathrm{cl}}$. Such a classical spectrum also does not exist, for essentially the same reasons. However, one must use the non-zero classical differential $d_{3}\left(e_{0}\right)=P c_{0}$ in the Adams spectral sequence for $t m f$.

References

[1] J. F. Adams, A periodicity theorem in homological algebra, Proc. Cambridge Philos. Soc. 62 (1966), 365-377 MR0194486
[2] Robert R. Bruner, Calculation of large Ext modules, Computers in geometry and topology (Chicago, IL, 1986), Lecture Notes in Pure and Appl. Math., vol. 114, Dekker, New York, 1989, pp. 79-104 MR988692
[3] \qquad , Ext in the nineties, Algebraic topology (Oaxtepec, 1991), Contemp. Math., vol. 146, Amer. Math. Soc., Providence, RI, 1993, pp. 71-90 MR1224908
[4] , The cohomology of the mod 2 Steenrod algebra: A computer calculation, Wayne State University Research Report 37 (1997)
[5] Bogdan Gheorghe, Daniel C. Isaksen, Achim Krause, and Nicolas Ricka, \mathbb{C}-motivic modular forms (2018), preprint, available at arXiv:1810.11050
[6] Bertrand J. Guillou and Daniel C. Isaksen, The η-local motivic sphere, J. Pure Appl. Algebra 219 (2015), no. 10, 4728-4756, DOI 10.1016/j.jpaa.2015.03.004 MR3346515
[7] Daniel C. Isaksen, The cohomology of motivic A(2), Homology Homotopy Appl. 11 (2009), no. 2, 251-274 MR2591921
[8] \qquad , Stable stems, Mem. Amer. Math. Soc., to appear
[9] Daniel C. Isaksen, Guozhen Wang, and Zhouli Xu, Classical and motivic Adams charts (2020), preprint
[10] \qquad , More stable stems (2020), preprint
[11] Ang Li, The v_{1}-periodic region of the complex-motivic Ext (2019), preprint, available at arXiv: 1912.03111
[12] Harvey Margolis, Stewart Priddy, and Martin Tangora, Another systematic phenomenon in the cohomology of the Steenrod algebra, Topology 10 (1970), 43-46, DOI 10.1016/0040-9383(71)90015-2 MR0300272
[13] J. Peter May, The cohomology of restricted Lie algebras and of Hopf algebras; application to the Steenrod algebra, Ph.D. dissertation, Princeton Univ., 1964
[14] _, Matric Massey products, J. Algebra 12 (1969), 533-568, DOI 10.1016/0021-8693(69)90027-1 MR0238929
[15] J. Peter May, Vanishing, approximation, periodicity, unpublished notes
[16] Christian Nassau, www.nullhomotopie.de
[17] Vladimir Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 1-57, DOI 10.1007/s10240-003-0009-z MR2031198 (2005b:14038a)
[18] _, Motivic cohomology with Z/2-coefficients, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 59-104, DOI 10.1007/s10240-003-0010-6 MR2031199 (2005b:14038b)

[^0]: *The author was supported by NSF grant DMS-1606290.

